Friday, April 3, 2020
Golf Physics Essays - Classical Mechanics, Rotation,
Golf Physics As anyone who has played a round of golf will attest to, the sport is based around many fundamental principals of physics. These basic laws are involved with every aspect of the game from how a player swings the club to how the ball moves through the air on its way toward the pin. It is the challenge that physics presents to the golfer that has allowed the game, and equipment used, to develop so drastically over the past one hundred years. The first golf balls used were called featheries. They were made with a horsehide cover packed with wet goose feathers. When the balls dried they became extremely hard. The major flaw with the featheries was that they could not be used when the conditions were wet because they would soften again.[5] Despite the flaw of the featheries, they remained the only ball used up until the middle of the 19th century when the revolutionary gutta-percha ball was invented. The new ball, sometimes referred to as a "guttie", was molded from the warmed, dried gum of the sapodilla tree.[5] These balls were cheap to manufacture and opened up the game of golf to a more diverse socio-economic group. This in turn made the game of golf very popular, which led to dramatic improvements in golf balls in the next decades. In 1900 a unique event occurred. Some claim that it can be called the first professional sports endorsement. The Spalding Company paid England's Harry Vardon a considerable sum of money to come to the United States to demonstrate what he could do in winning tournaments using the latest ball design. He won the U.S. Open using the new rubber-wound Haskell ball.[5] This led to another major revolution in the design of the golf ball. Not only was this ball cheap to manufacture, but also it could be hit farther than any other ball previously used. The Haskell ball was such a success that it was not until 1968 that the two-piece balls of today emerged in the market. Obviously a lot of time, effort, research, and money were put forth into the development of the golf ball, as it is manufactured today. The reason for this ongoing process is to help a golfer use some laws of physics to his advantage (i.e. placing spin on the ball to create lift) while finding a work around for other physical properties that can be detrimental to a players golf game (i.e. drag which causes the ball to slow down and fly closer to the ground). When examining the physics, which surrounds the game of golf, one must carefully consider all aspects of the game, not just the golf ball or even just the equipment being used. The stroke is by far the most important aspect to any participants round of golf. Among the scientific community, an event, such as the golf stroke, is thought of as a dynamic process using the physical principals of mechanics based on Newton's Laws of motion. The stroke is actually three separate events; the swing of the club, the impact of the club head with the ball, and the flight of the ball toward the target. It is the sum of these three parts that makes a successful stroke. Before delving into the details of the golf stroke, it is important for one to consider the general concepts of motion that control the swing of the golf club. Two men are most influential in this area of study, Galileo Galilee and Isaac Newton. It is the principles of these two men that will be used during the discussion of the physics of golf. A brief explanation of momentum, moment of inertia, torque, centripetal force, and centrifugal force can be located in "Appendix 4". These terms were derived from the experiments and research of first Galileo, and then expanded upon by Newton. Although neither of these two men are solely responsible for all of the physical principals presented in this paper, Galileo and Newton were two of the most influential men in these areas of study. When a scientist attempts to explain something, he or she always develops a model to work with. In the case of the golf stroke, it has become evident that comparing such an action to the snapping of a whip lends itself nicely to a deeper understanding. The model appropriate to the study of a whip, such as a bullwhip, would be a large number of small rods with flexible connections. This is important to understanding
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.